Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation.
نویسندگان
چکیده
Seasonal differences have been observed in the ability of desiccated mosses to dissipate absorbed light energy harmlessly into heat. During the dry summer season desiccation-tolerant mosses were more protected against photo-oxidative damage in the dry state than during the more humid winter season. Investigation of the differences revealed that phototolerance could be acquired or lost even under laboratory conditions. When a desiccated poikilohydric moss such as Rhytidiadelphus squarrosus is in the photosensitive state, the primary quinone, Q(A), in the reaction centre of photosystem II is readily reduced even by low intensity illumination as indicated by reversibly increased chlorophyll fluorescence. No such reduction is observed even under strong illumination in desiccated mosses after phototolerance has been acquired. In this state, reductive charge stabilization is replaced by energy dissipation. As a consequence, chlorophyll fluorescence is quenched. Different mechanisms are responsible for quenching. One is based on the presence of zeaxanthin provided drying occurs in the light. This mechanism is known to be controlled by a protonation reaction which is based on proton-coupled electron transport while the moss is still hydrated. Another mechanism which also requires light for activation, but no protonation, is activated during desiccation. While water is slowly lost, fluorescence is quenched. In this situation, an absorption band formed at 800 nm in the light is stabilized. It loses reversibility on darkening. Comparable kinetics of fluorescence quenching and 800 nm signals as well as the linear relationship between non-photochemical fluorescence quenching (NPQ) and loss of stable charge separation in photosystem II reaction centres suggested that desiccation-induced quenching is a property of photosystem II reaction centres. During desiccation, quenchers accumulate which are stable in the absence of water but revert to non-quenching molecular species on hydration. Together with zeaxanthin-dependent energy dissipation, desiccation-induced thermal energy dissipation protects desiccated poikilohydric mosses against photo-oxidation, ensuring survival during drought periods.
منابع مشابه
Three different mechanisms of energy dissipation of a desiccation-tolerant moss serve one common purpose: to protect reaction centres against photo-oxidation*
Three different types of non-photochemical de-excitation of absorbed light energy protect photosystem II of the sun- and desiccation-tolerant moss Rhytidium rugosum against photo-oxidation. The first mechanism, which is light-induced in hydrated thalli, is sensitive to inhibition by dithiothreitol. It is controlled by the protonation of a thylakoid protein. Other mechanisms are activated by des...
متن کاملProtection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens.
Experimental work on the control of photosystem II in the photosynthetic apparatus of higher plants, mosses and lichens is reviewed on a background of current literature. Transmembrane proton transport during photoassimilatory and photorespiratory electron flows is considered insufficient for producing the intrathylakoid acidification necessary for control of photosystem II activity under exces...
متن کاملThe slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis.
Regulated thermal dissipation of absorbed light energy within the photosystem II antenna system helps protect photosystem II from damage in excess light. This reversible photoprotective process decreases the maximum quantum yield of photosystem II (Fv)/Fm) and CO2 assimilation (phiCO2), and decreases the convexity of the non-rectangular hyperbola describing the response of leaf CO2 assimilation...
متن کاملComparative Study on the Effect of Water Stress and Rootstock on Photosynthetic Function in Pistachio (Pistacia vera L.) Trees
The aim of this study is to evaluate the effects of water deficit stress on chlorophyll fluorescence (CF) characteristics of photosystem II (PSII) and pigment contents in two rootstock seedlings (Pistacia atlantica L. and P. khinjuk L.). Three levels of soil water potential (Ψs) was used, including WWD (-0.05 MPa), MWD (-0.7 MPa) and SWD (-1.5 MPa). It was found that water stress increased the...
متن کاملSinglet oxygen production in photosynthesis.
A photosynthetic organism is subjected to photo-oxidative stress when more light energy is absorbed than is used in photosynthesis. In the light, highly reactive singlet oxygen can be produced via triplet chlorophyll formation in the reaction centre of photosystem II and in the antenna system. In the antenna, triplet chlorophyll is produced directly by excited singlet chlorophyll, while in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 57 12 شماره
صفحات -
تاریخ انتشار 2006